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Building our model

1 Find a class of models that might have generated the observed series:
ARMA, ARIMA, ARCH, GARCH

2 Identify the model in a parsimonious way, that is among the models
that are good fit for the observed series, the one with few number of
covariates (use ACF, PACF, AIC).

3 Estimate the parameters.
4 Diagnostic: in this step, boh the goodness of fit of the selected model

for the oserved series and/or the adequacy of the hypothesis about
the distribution of the shock are evaluated.

5 Use the selected model for forecasting.
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Model identification

Heuristic method: compares the path of the theoretical and empirical
model (estimated with data) using ACF and PACF.
AR(p) has ACF that decays slowly towards zero and vanishing PACF
for lags greater than p.
MA(q) has vanishing ACF for lags greater than q and PACF that
decays slowly towards zero.
ARMA(p, q) has ACF that behaves as that of an AR(p) after the first
q lags and PACF that behaves as that of an MA(q) after the first q
lags.
In general, it is difficult to identify ARMA models.
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Parameters estimation for ARMA processes

There are three ways to estimate ARMA models.

1 Least squares.

2 Maximum likelihood.

3 Method of moments.
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Least squares

The class of AR is generally not difficult to estimate.
For this class we can rely on the ordinary least squares estimator
(OLS)
Consider

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + ϵt.

The OLS estimator solves:

minφ1,φ2,...,φp

n∑
t=p+1

(Xt − φ1Xt−1 − φ2Xt−2 − . . .− φpXt−p)
2
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For instance, consider the AR(1) process:

Xt = φXt−1 + ϵt

The OLS estimator is

φ̂ =

∑n
t=1 XtXt−1∑n

t=1 X2
t−1

.
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Maximum likelihood

In order to compute the maximum likelihood estimator we need to
make assumptions on the distribution of the shocks.
Generally, it is assumed ϵt ∼ i.i.d.N(0, σ2).

Maximum likelihood for AR processes.
For the AR(1), the exact maximum likelihood function is

L(φ, σ2) = f(x1, x2, . . . , xn|φ, σ2) =

= f(x1|φ, σ2)× f(x2|x1, φ, σ
2)× f(x3|x2, x1, φ, σ

2)×

× . . .× f(xn|xn−1, . . . , x1, φ, σ
2).

This quantity is function of ϕ and σ2.
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In order to compute the maximum likelihood estimator, it is easier to
work with the logarithm of L(φ, σ2)

The maximum is found by taking partial derivatives:

∂l(φ, σ2)

∂φ
= 0

∂l(φ, σ2)

∂σ2 = 0.

This procedure allows to obtain estimators φ̂ and σ̂2 which are the
values that maximize the function L(φ, σ2).
Such estimators do not always have closed form solution and
numerical procedures are sometimes used to compute them.
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AR estimation

In the case of the AR(1), what is the distribution f(x1|φ, σ2) ?
Recall that we assumed ϵt ∼ i.i.d.N(0, σ2).
We know that

E(X1) = 0 and Var(X1) =
σ2

(1 − φ2)
,

Also, we know that the AR(1) can be written as an MA(∞).
Therefore, ϵt ∼ i.i.d.N(0, σ2) implies X1 ∼ N(0, σ2/(1−φ2)). That is,

f(x1|φ, σ2) =
1√

2πσ2/(1 − φ2)
exp

{
−(1 − φ2)

2σ2 x2
1

}
.
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What is the distribution of f(x2|x1, φ, σ2) ?
From the AR(1) equation we see that

X2 = φX1 + ϵ2.

Conditioning on X1 = x1 we have

(X2|X1 = x1, φ, σ
2) ∼ N(φx1, σ

2),

From which

f(x2|x1, φ, σ
2) =

1√
2πσ2

exp

{
− 1

2σ2 (x2 − φx1)
2
}
.

Similarly, we can proceed for X3. Notice, however, that for the AR(1)
we have

f(x3|x2, x1, φ, σ
2) = f(x3|x2, φ, σ

2).
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f(x3|x2, φ, σ
2) =

1√
2πσ2

exp

{
− 1

2σ2 (x3 − φx2)
2
}

Considering all the variables, the likelihood writes

L(φ, σ2) =
(
1 − φ2) 1

2

(
1

2πσ2

) n
2
exp

{
−(1 − φ2)

2σ2 x2
1

}
×

×
n∏

t=2
exp

{
− 1

2σ2 (xt − φxt−1)
2
}

=

=
(
1 − φ2) 1

2

(
1

2πσ2

) n
2
exp

{
−(1 − φ2)

2σ2 x2
1

}
×

× exp

{
− 1

2σ2

n∑
t=2

(xt − φxt−1)
2
}
.
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In order to compute the maximum likelihood estimator, the logarithm
of the likelihood function is considered:

l(φ, σ2) = −n
2 log(2πσ2) +

1
2 log(1 − φ2)− 1

2

n∑
t=2

(xt − φxt−1)
2.

Then, the maximum is computed via partial derivatives:

∂l(φ, σ2)

∂φ
= 0

∂l(φ, σ2)

∂σ2 = 0.

From this we derive φ̂ and σ̂2 that have no closed form solution and
should be computed numerically.
Alternatively, we can consider the conditional likelihood, where the
observation x1 is seen as deterministic.
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The conditional likelihood function is given by

L(φ, σ2) =
n∏

t=2
f(xt|xt−1, φ, σ

2) =

(
1

2πσ2

) n−1
2 n∏

t=2
exp

{
− 1

2σ2 (xt − φxt−1)
2
}
.

Log likelihood becomes

l(φ, σ2) = −n − 1
2 log(2π)− n − 1

2 log(σ2)− 1
2σ2

n∑
t=2

(xt − φxt)
2.
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It can be shown that minimizing that function with respect to the
parameters is equivalent to finding the least squares estimators.

It can be shown that if the number n of observation of the time series
is high, the contribution of x1 becomes null. Then, the procedures are
asymptotically equivalent.
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MA estimation

For MA processes OLS estimation does not apply because the shocks
cannot be observed
Thus, the technique of the conditional maximum likelihood is
considered.
Consider an MA(1) process and assume to know ϵ0 = known.
The likelihood function writes

L(θ, σ2) =

(
1√

2πσ2

)n
exp

{
− 1

2σ2

n∑
t=1

(xt − θϵt−1)
2
}
.
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Differently form xt, ϵt are not observed.
However, assuming to know ϵ0, ϵ1, ϵ2, . . . can be obtained recursively.
Unfortunately, the resulting likelihood is non linear in θ, so it can be
evaluated only by means of numerical procedures.
The exact likelihood is even more complicated and does not allow to
obtain the estimators in closed form.
In order to write the likelihood function of an ARMA process it takes
to put together the two parts (AR and MA).
Also in this case, we need numerical procedures to obtain estimates.
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Model selection

The randomness associated with the fact that the relevant quantities
of the generating process are estimates, does not allow to know the
choice of the orders on p and q.
For each analyzed series, we obtain a set of models (pairs of p and q)
among which the best one is chosen.
The choice is based on a parsimonious criteria, the preferred model
will be that one with the smallest number of parameters.
Empirical rule: If the value of the estimates ξ̂ = (θ̂, φ̂) lies inside the
interval [−2se(ξ̂), 2se(ξ̂)] we claim that ξ̂ is not significant and set
ξ̂ = 0. Otherwise, we claim ξ̂ is significant and use the model.
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The same conclusion holds when considering the p-value, P.
P is a number ∈ [0, 1] that measure the evidence in the data in favor
of the null hypothesis H0. Small values for P indicate evidence
against H0.
If P is high (> 0.5) accept the null hypothesis H0: H0 : ξ̂ = 0.
Otherwise, for P < 0.5, reject the null hypothesis H0 : ξ̂ = 0, so ξ̂ is
significant and can be used in the model.
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A well known automatic selection criteria is the AIC (Akaike
Information Criterion)

AIC(p, q) = n log(σ̂2(p, q)) + 2(p + q).

σ̂2(p, q) represents the variance of the residuals and 2(p + q) is a
penalizing factor.
Compute the AIC value for different values of p and q in the model
and choose those that minimize the AIC.
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The higher the orders of p and q the better the fit (increasing the
number of covariates better explains the phenomenon) and the less is
the variance of residuals σ̂2(p, q).
However, high orders of p and q increases the number of parameters
that need to be estimated, thus the randomness in the final outcome.
In particular, when using the model for forecasting, the forecast error
will depend both on the variance of the residuals and on the errors in
the parameters estimation.
For this reason, AIC depends on a penalizing factor that increases as
the number of parameters increases.
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Diagnostic

After having identified the model (chosen the order) and estimated
the parameters, diagnostic operations are aimed at checking the
goodness of the fit based on the observed residuals

ϵ̂ = xt − φ̂1xt−1 − . . . φ̂pxt−p − θ̂1ϵt−1 − . . .− θ̂qϵt−q.

The goal is to check if the observed residuals satisfy the underlying
hypothesis of the model, very important is the uncorrelation (WN).
Recall that the goal of time series models is to explain the serial
autocorrelation of the phenomena.
The chosen model should capture and explain ”all” the existing
dependence.
If the chosen model does not explain the phenomenon, it will not
capture some part of the correlation that will remain in the residuals
that will appear correlated (no WN)!
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The residuals time series can be analyzed as we studied.
ACF, ρ̂ϵ(h), and PACF, ϕ̂ϵ(kk), can be computed. If their values lie
outside the interval [

−1.96√
n ,

1.96√
n

]
then, ρ̂ϵ(h) and ϕ̂ϵ(kk) are significantly different from zero and we
can conclude that the model is inadequate.
Indeed, under the Gaussianity assumption[

−1.96√
n ,

1.96√
n

]
is the critical region for accepting a test on ρϵ(h) at 5% significance
level.
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The behaviour of the ACF observed on the residuals can be checked as
h varies, by plotting two lines parallel to the x-axis in [−1.96√n ,+1.96√n ].
We can also use statistical test procedures to see if the residuals are
uncorrelated, that is if H0 : ρ̂ϵ(h) ≈ 0 for each h.
The Box-Pierce test is based in the statistic

QM = n
M∑

h=1
ρ̂2
ϵ (h).

M is the number of autocorrelation (typically n/2). We expect QM
small for a correct choice of the model.
A modified version is the Ljung-Box test

Q∗
M = n(n + 2)

M∑
h=1

ρ̂2
ϵ (h)

(n − h) .
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In order to evaluate QM we can rely on its associated p-value.
Empirical rule: If the p-value is less than 0.05 (0.01) then the null
hypothesis H0 that the residuals are uncorrelated should be rejected
and the model should be re-considered. Otherwise, if the p-value is
greater than 0.05 (0.01) we can accept the model.
The analysis of residuals also helps to understand if the Gaussianity
hypothesis is correct.
Besides a graphical check (QQ-plot), statistical tests may be
conducted (χ2 test or tests based on residuals third and fourth
moments).
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